Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 7 de 7
Фильтр
Добавить фильтры

база данных
Год
Годовой диапазон
1.
Molecules ; 27(17)2022 Aug 24.
Статья в английский | MEDLINE | ID: covidwho-2023941

Реферат

Flavonoids are biologically active natural products of great interest for their potential applications in functional foods and pharmaceuticals. A hesperetin-7-O-glucoside inclusion complex with ß-cyclodextrin (HEPT7G/ßCD; SunActive® HCD) was formulated via the controlled enzymatic hydrolysis of hesperidin with naringinase enzyme. The conversion rate was nearly 98%, estimated using high-performance liquid chromatography analysis. The objective of this study was to investigate the stability, solubility, and spectroscopic features of the HEPT7G/ßCD inclusion complex using Fourier-transform infrared (FTIR), Raman, ultraviolet-visible absorption (UV-vis), 1H- and 13C- nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), liquid chromatography/mass spectroscopy (LC-MS), scanning electron microscopy (SEM), and powdered X-ray diffraction (PXRD) spectroscopic techniques including zeta potential, Job's plot, and phase solubility measurements. The effects of complexation on the profiles of supramolecular interactions in analytic features, especially the chemical shifts of ß-CD protons in the presence of the HEPT7G moiety, were evaluated. The stoichiometric ratio, stability, and solubility constants (binding affinity) describe the extent of complexation of a soluble complex in 1:1 stoichiometry that exhibits a greater affinity and fits better into the ß-CD inner cavity. The NMR spectroscopy results identified two different configurations of the HEPT7G moiety and revealed that the HEPT7G/ßCD inclusion complex has both -2S and -2R stereoisomers of hesperetin-7-O-glucoside possibly in the -2S/-2R epimeric ratio of 1/1.43 (i.e., -2S: 41.1% and -2R: 58.9%). The study indicated that encapsulation of the HEPT7G moiety in ß-CD is complete inclusion, wherein both ends of HEPT7G are included in the ß-CD inner hydrophobic cavity. The results showed that the water solubility and thermal stability of HEPT7G were apparently increased in the inclusion complex with ß-CD. This could potentially lead to increased bioavailability of HEPT7G and enhanced health benefits of this flavonoid.


Тема - темы
Hesperidin , beta-Cyclodextrins , Calorimetry, Differential Scanning , Flavonoids/chemistry , Glucosides , Protons , Solubility , Spectroscopy, Fourier Transform Infrared/methods , X-Ray Diffraction , beta-Cyclodextrins/chemistry
2.
Int J Mol Sci ; 23(18)2022 Sep 07.
Статья в английский | MEDLINE | ID: covidwho-2010122

Реферат

Inhibition of inflammatory responses from the spike glycoprotein of SARS-CoV-2 (Spike) by targeting NLRP3 inflammasome has recently been developed as an alternative form of supportive therapy besides the traditional anti-viral approaches. Clerodendrum petasites S. Moore (C. petasites) is a Thai traditional medicinal plant possessing antipyretic and anti-inflammatory activities. In this study, C. petasites ethanolic root extract (CpEE) underwent solvent-partitioned extraction to obtain the ethyl acetate fraction of C. petasites (CpEA). Subsequently, C. petasites extracts were determined for the flavonoid contents and anti-inflammatory properties against spike induction in the A549 lung cells. According to the HPLC results, CpEA significantly contained higher amounts of hesperidin and hesperetin flavonoids than CpEE (p < 0.05). A549 cells were then pre-treated with either C. petasites extracts or its active flavonoids and were primed with 100 ng/mL of spike S1 subunit (Spike S1) and determined for the anti-inflammatory properties. The results indicate that CpEA (compared with CpEE) and hesperetin (compared with hesperidin) exhibited greater anti-inflammatory properties upon Spike S1 induction through a significant reduction in IL-6, IL-1ß, and IL-18 cytokine releases in A549 cells culture supernatant (p < 0.05). Additionally, CpEA and hesperetin significantly inhibited the Spike S1-induced inflammatory gene expressions (NLRP3, IL-1ß, and IL-18, p < 0.05). Mechanistically, CpEA and hesperetin attenuated inflammasome machinery protein expressions (NLRP3, ASC, and Caspase-1), as well as inactivated the Akt/MAPK/AP-1 pathway. Overall, our findings could provide scientific-based evidence to support the use of C. petasites and hesperetin in the development of supportive therapies for the prevention of COVID-19-related chronic inflammation.


Тема - темы
Antipyretics , COVID-19 Drug Treatment , Clerodendrum , Hesperidin , Petasites , A549 Cells , Anti-Inflammatory Agents/pharmacology , Caspase 1/metabolism , Clerodendrum/metabolism , Cytokines/metabolism , Flavonoids/pharmacology , Hesperidin/pharmacology , Humans , Inflammasomes/metabolism , Interleukin-18 , Interleukin-6 , Lung/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Plant Extracts/pharmacology , Proto-Oncogene Proteins c-akt , SARS-CoV-2 , Solvents , Spike Glycoprotein, Coronavirus , Transcription Factor AP-1
3.
Inflammopharmacology ; 30(5): 1533-1539, 2022 Oct.
Статья в английский | MEDLINE | ID: covidwho-2000007

Реферат

Hesperetin, an aglycone metabolite of hesperidin with high bioavailability, recently gained attention due to its anti-COVID-19 and anti-cancer properties. Multiple studies revealed that cancer patients are prone to experience a severe form of COVID-19 and higher mortality risk. In addition, studies suggested that COVID-19 can potentially lead to cancer progression through multiple mechanisms. This study proposes that hesperetin not only can be used as an anti-COVID-19 agent but also can reduce the risk of multiple cancer progression by suppressing several intracellular signaling pathways in cancer patients with COVID-19. Therefore, in this review, we attempted to provide evidence demonstrating anti-COVID-19/cancer properties of hesperetin with several mechanisms.


Тема - темы
COVID-19 Drug Treatment , Hesperidin , Neoplasms , Hesperidin/pharmacology , Hesperidin/therapeutic use , Humans , Neoplasms/drug therapy , SARS-CoV-2 , Signal Transduction
4.
Appl Microbiol Biotechnol ; 106(18): 5987-6002, 2022 Sep.
Статья в английский | MEDLINE | ID: covidwho-1990606

Реферат

The coronavirus SARS-CoV-2 has caused a pandemic with > 550 millions of cases and > 6 millions of deaths worldwide. Medical management of COVID-19 relies on supportive care as no specific targeted therapies are available yet. Given its devastating effects on the economy and mental health, it is imperative to develop novel antivirals. An ideal candidate will be an agent that blocks the early events of viral attachment and cell entry, thereby preventing viral infection and spread. This work reports functionalized titanium dioxide (TiO2)-based nanoparticles adsorbed with flavonoids that block SARS-CoV-2 entry and fusion. Using molecular docking analysis, two flavonoids were chosen for their specific binding to critical regions of the SARS-CoV-2 spike glycoprotein that interacts with the host cell angiotensin-converting enzyme-2 (ACE-2) receptor. These flavonoids were adsorbed onto TiO2 functionalized nanoparticles (FTNP). This new nanoparticulate compound was assayed in vitro against two different coronaviruses; HCoV 229E and SARS-CoV-2, in both cases a clear antiviral effect was observed. Furthermore, using a reporter-based cell culture model, a potent antiviral activity is demonstrated. The adsorption of flavonoids to functionalized TiO2 nanoparticles induces a ~ threefold increase of that activity. These studies also indicate that FTNP interferes with the SARS-CoV-2 spike, impairing the cell fusion mechanism. KEY POINTS/HIGHLIGHTS: • Unique TiO2 nanoparticles displaying flavonoid showed potent anti-SARS-CoV-2 activity. • The nanoparticles precisely targeting SARS-CoV-2 were quantitatively verified by cell infectivity in vitro. • Flavonoids on nanoparticles impair the interactions between the spike glycoprotein and ACE-2 receptor.


Тема - темы
COVID-19 Drug Treatment , Nanoparticles , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Flavonoids/pharmacology , Humans , Molecular Docking Simulation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Titanium
5.
Front Bioeng Biotechnol ; 10: 858156, 2022.
Статья в английский | MEDLINE | ID: covidwho-1952235

Реферат

Antiviral and non-toxic effects of silver nanoparticles onto in vitro cells infected with coronavirus were evaluated in this study using High-Resolution Magic-Angle Spinning Nuclear Magnetic Resonance (HR-MAS NMR) spectroscopy. Silver nanoparticles were designed and synthesized using an orange flavonoid-hesperetin (HST)-for reduction of silver(I) and stabilization of as obtained nanoparticles. The bio-inspired process is a simple, clean, and sustainable way to synthesize biogenic silver nanoparticles (AgNP@HST) with diameters of ∼20 nm and low zeta potential (-40 mV), with great colloidal stability monitored for 2 years. The nanoparticles were used for the fabrication of two types of antiviral materials: colloids (AgNP@HST spray) and 3D flexible nanostructured composites. The composites, decorated with AgNP@HST (0.05 mmol L-1), were made using cellulose nanofibers (CNF) obtained from orange peel and graphene oxide (GO), being denominated CNF@GO@AgNP@HST. Both materials showed high virucidal activity against coronaviruses in cell infection in vitro models and successfully inhibited the viral activity in cells. HR-MAS 1H-NMR technique was used for determining nanomaterials' effects on living cells and their influences on metabolic pathways, as well as to study viral effects on cells. It was proven that none of the manufactured materials showed toxicity towards the intact cells used. Furthermore, viral infection was reverted when cells, infected with the coronavirus, were treated using the as-fabricated nanomaterials. These significant results open possibilities for antiviral application of 3D flexible nanostructured composite such as packaging papers and filters for facial masks, while the colloidal AgNP@HST spray can be used for disinfecting surfaces, as well as a nasal, mouth, and eye spray.

6.
J Food Biochem ; 46(9): e14212, 2022 09.
Статья в английский | MEDLINE | ID: covidwho-1807163

Реферат

Hesperetin, mainly found in citrus honey, has antioxidant, anti-inflammatory, and antiviral properties. Recently, the effect of hesperetin on different aspects of SARS-CoV-2 infection such as viral entry, replication, and inflammatory responses has attracted a lot of attention. However, the exact molecular mechanism for its effects on SARS-CoV-2 infection is not stated. The PI3K/AKT signaling pathway is an intracellular pathway involved in cell proliferation, protein synthesis, and response to environmental changes. Since the role of this pathway in the pathogenesis of SARS-CoV-2 has recently been considered, this letter assumes the probable role of this pathway in the function of hesperetin against SARS-CoV-2 infection. PRACTICAL APPLICATIONS: In this paper, we have discussed the therapeutic effects of hesperetin on SARS-CoV-2 infection. Additionally, we have hypothesized the molecular mechanism of hesperetin in suppression of SARS-CoV-2 entry to the host cells, its replication and inhibition of inflammatory responses. Based on this evidence, the pharmacological properties of hesperetin make this natural compound a potential treatment for suppression of SARS-CoV-2 entry into host cells and the subsequent replication of viral particles.


Тема - темы
COVID-19 Drug Treatment , SARS-CoV-2 , Hesperidin , Humans , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics
7.
Int J Mol Sci ; 23(7)2022 Apr 04.
Статья в английский | MEDLINE | ID: covidwho-1785743

Реферат

This study aimed at obtaining hesperidin (Hed) and hesperetin (Het) systems with HP-ß-CD by means of the solvent evaporation method. The produced systems were identified using infrared spectroscopy (FT-IR), X-ray powder diffraction (XRPD), and differential scanning calorimetry (DSC). Moreover, in silico docking and molecular dynamics studies were performed to assess the most preferable site of interactions between tested compounds and HP-ß-CD. The changes of physicochemical properties (solubility, dissolution rate, and permeability) were determined chromatographically. The impact of modification on biological activity was tested in an antioxidant study as well as with regards to inhibition of enzymes important in pathogenesis of neurodegenerative diseases. The results indicated improvement in solubility over 1000 and 2000 times for Hed and Het, respectively. Permeability studies revealed that Hed has difficulties in crossing biological membranes, in contrast with Het, which can be considered to be well absorbed. The improved physicochemical properties influenced the biological activity in a positive manner by the increase in inhibitory activity on the DPPH radical and cholinoesterases. To conclude the use of HP-ß-CD as a carrier in the formation of an amorphous inclusion complex seems to be a promising approach to improve the biological activity and bioavailability of Hed and Het.


Тема - темы
Hesperidin , 2-Hydroxypropyl-beta-cyclodextrin/chemistry , Biological Availability , Calorimetry, Differential Scanning , Hesperidin/pharmacology , Solubility , Spectroscopy, Fourier Transform Infrared/methods , X-Ray Diffraction
Критерии поиска